Gain-of-function Mutations Reveal Expanded Intermediate States and a Sequential Action of Two Gates in MscL
نویسندگان
چکیده
The tension-driven gating transition in the large mechanosensitive channel MscL proceeds through detectable states of intermediate conductance. Gain-of-function (GOF) mutants with polar or charged substitutions in the main hydrophobic gate display altered patterns of subconducting states, providing valuable information about gating intermediates. Here we present thermodynamic analysis of several GOF mutants to clarify the nature and position of low-conducting conformations in the transition pathway. Unlike wild-type (WT) MscL, which predominantly occupies the closed and fully open states with very brief substates, the mild V23T GOF mutant frequently visits a multitude of short-lived subconducting states. Severe mutants V23D and G22N open in sequence: closed (C) --> low-conducting substate (S) --> open (O), with the first subtransition occurring at lower tensions. Analyses of equilibrium state occupancies as functions of membrane tension show that the C-->S subtransition in WT MscL is associated with only a minor conductance increment, but the largest in-plane expansion and free energy change. The GOF substitutions strongly affect the first subtransition by reducing area ((Delta)A) and energy ((Delta)E) changes between C and S states commensurably with the severity of mutation. GOF mutants also exhibited a considerably larger (Delta)E associated with the second (S-->O) subtransition, but a (Delta)A similar to WT. The area changes indicate that closed conformations of GOF mutants are physically preexpanded. The tension dependencies of rate constants for channel closure (k(off)) predict different positions of rate-limiting barriers on the energy-area profiles for WT and GOF MscL. The data support the two-gate mechanism in which the first subtransition (C-->S) can be viewed as opening of the central (M1) gate, resulting in an expanded water-filled "leaky" conformation. Strong facilitation of this step by polar GOF substitutions suggests that separation of M1 helices associated with hydration of the pore in WT MscL is the major energetic barrier for opening. Mutants with a stabilized S1 gate demonstrate impeded transitions from low-conducting substates to the fully open state, whereas extensions of S1-M1 linkers result in a much higher probability of reverse O-->S transitions. These data strongly suggest that the bulk of conductance gain in the second subtransition (S-->O) occurs through the opening of the NH2-terminal (S1) gate and the linkers are coupling elements between the M1 and S1 gates.
منابع مشابه
Comparing and contrasting Escherichia coli and Mycobacterium tuberculosis mechanosensitive channels (MscL). New gain of function mutations in the loop region.
Sequence analysis of 35 putative MscL homologues was used to develop an optimal alignment for Escherichia coli and Mycobacterium tuberculosis MscL and to place these homologues into sequence subfamilies. By using this alignment, previously identified E. coli MscL mutants that displayed severe and very severe gain of function phenotypes were mapped onto the M. tuberculosis MscL sequence. Not all...
متن کاملGating-associated conformational changes in the mechanosensitive channel MscL.
Bacterial cells avoid lysis in response to hypoosmotic shock through the opening of the mechanosensitive channel MscL. Upon channel opening, MscL is thought to expand in the plane of the membrane and form a large pore with an estimated diameter of 3-4 nm. Here, we set out to analyze the closed and open structure of cell-free MscL. To this end, we characterized the function and structure of wild...
متن کاملOne face of a transmembrane helix is crucial in mechanosensitive channel gating.
MscL is a mechanosensitive channel in bacteria that responds directly to membrane tension by opening a large conductance pore. To determine functionally important residues within this molecule, we have randomly mutagenized mscL, expressed the genes in living bacteria, and screened for gain-of-function mutants with hampered growth. Expression of these genes caused leakage of cytoplasmic solutes ...
متن کاملImplementation of Single-Qutrit Quantum Gates via Tripod Adiabatic Passage
We proposed and analyzed implementation of the single-qutrit quantum gates based on stimulated Raman adiabatic passage (STIRAP) between magnetic sublevels in atoms coupled by pulsed laser fields. This technique requires only the control of the relative phase of the driving fields but do not involve any dynamical or geometrical phases, which make it independent of the other interaction details: ...
متن کاملDifferential Impact of Sequential and Simultaneous Input Enhancement on Iranian EFL Learners’ Intake
This study set out to explore whether different input enhancement tasks as implicit instruction techniques had any significant impact on the intake of causative verbs in English as a foreign language among Iranian EFL learners. For this purpose, three intact classes consisting of 75 male and female intermediate L2 learners were randomly divided into three conditions: simultaneous grammar consci...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of General Physiology
دوره 125 شماره
صفحات -
تاریخ انتشار 2005